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Abstract. We study a fermionic version of the Sherrington-Kirkpatrick model including nearest-neighbor
hopping on a ∞-dimensional simple cubic lattices. The problem is reduced to one of free fermions moving
in a dynamical effective random medium. By means of a CPA method we derive a set of self-consistency
equations for the spin glass order parameter and for the Fourier components of the local spin susceptibility.
In order to solve these equations numerically we employ an approximation scheme which restricts the
dynamics to a feasible number of the leading Fourier components. From a sequence of systematically
improved dynamical approximations we estimate the location of the quantum critical point.

PACS. 75.10.Nr Spin glass and other random models – 75.40.Cx Dynamic properties – 71.10.Fd Lattice
fermion models

1 Introduction

Quantum-dynamical mean field theories are highly ap-
preciated, helpful methods to provide insight into models
of strongly interacting systems [1]. A well-known case is
certainly the Hubbard model including its various model
ramifications. Fermionic spin glass models, though de-
scribing the quite different physics of randomly interacting
disordered systems, belong to this category as well; in par-
ticular, they also deal with an intense interplay between
magnetism and transport properties.

Quantum dynamics in systems with random many-
body interactions are known to contain a challenging tech-
nical difficulty which arises from the double-time depen-
dence of the spin glass field. This feature of quantum spin
dynamics is hard to handle even in the dynamical mean
field theory (DMFT) and requires further simplifications,
such as the limit M → ∞ in SU(M)-generalizations of
spin systems [2].

In earlier work the so-called static approximation (de-
fined by a static effective spin glass field) was used to
construct a systematic low temperature expansion for
metallic spin glasses [3]. The quantum critical point was
determined within this approximation. Later, a Ginzburg-
Landau theory [4], which kept only terms relevant or dan-
gerously irrelevant under the quantum dynamical renor-
malization group, was applied to study the critical expo-
nents.
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Within this framework it turned out that the quantum-
dynamical Gaussian result for the shift exponent of the
critical temperature disagreed with the static approxima-
tion result due to the effect of dangerously irrelevant dy-
namic couplings. The shift exponent φ can be defined
by Tc(x) ∼ (xc − x)φ, xc > x, where x stands for the
parameter which drives the quantum phase transition,
and Tc(xc) vanishes by definition at the quantum criti-
cal point (QCP).

Naturally, renormalization groups are not designed to
determine critical points. However, the positions of the
QCPs are relevant, too. In finite dimensions the magnetic
transition may coincide with a localization transition driv-
en by the randomness of the many-body interaction. If
these transitions do not coincide it is still important to
know whether or not the magnetic transition occurs within
the metallic phase and, perhaps, to identify parameters
which influence the relative position of the QCPs. The
answer may in some detail be model-dependent, but a co-
incidence of both transitions would almost certainly con-
tain deeper reasons and could be expected to appear at
least in model classes.

In this work we adapt and apply the coherent poten-
tial approximation (CPA) to a metallic spin glass problem.
Originally this powerful non-perturbative method was de-
veloped to describe non-interacting disordered electron
systems [5], and in this context the CPA can be shown
to become exact in the limit of infinite spatial dimen-
sions (d → ∞) [6]. Later, the CPA formalism was gener-
alized to deal with interacting electron systems [7,8] with
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highly non-trivial couplings of the Matsubara frequencies.
Finally, the CPA method can also be applied to dynam-
ical disorder. Like in the present work, this situation for
instance results from the dynamical decoupling of inter-
action terms [9].

It is interesting to note that effective action terms
that are non-diagonal in imaginary time not only occur in
the presence of disorder. For certain translationally invari-
ant models, the so-called extended DMFT approach [10],
which to some extend incorporates spatial correlations,
gives rise to effective impurity problems equivalent to the
one studied in this article.

The present article is organized as follows. The re-
quired technical tools and strategies are developed in Sec-
tion 2. After the model definition we give a brief de-
scription of the dynamical two-step decoupling procedure,
which reduces the problem to one of free fermions moving
in a dynamical random magnetic field. The model assump-
tion of a fully connected magnetic interaction facilitates
a saddle point treatment. Extending previous work [3,11]
we choose a dynamical self-consistent saddle point for the
spin glass field.

The quantum-dynamical CPA method, shaped to ap-
ply to the present quantum spin glass model, is discussed
in Section 2.2. Within this framework, a set of replica-
symmetric self-consistency equations for the saddle point
values q (spin glass order parameter) and q̃m = q̃(ωm)
(the local replica diagonal spin correlation) are derived.
As the centerpiece we obtain a matrix CPA-equation in
Matsubara frequency space.

Our ideas for the approximate solution of these self-
consistency equations are introduced in Section 2.3. As a
systematic approximation scheme we propose to restrict
the dynamics of the effective random medium to a number
of bosonic Matsubara frequencies that can be numerically
dealt with. Similar approximations have been constructed
earlier in the context of the Ising spin glass in the trans-
verse field by means of discretization of the imaginary time
axis [12,13].

Section 3 revisits the spin-static approximation where
a crucial simplification arises: the matrix structure of the
equations disappears. In particular, the CPA-equation can
be solved independently for each Matsubara frequency.
However, via the saddle point values, the non-trivial cou-
pling of the frequencies is preserved also in the static set
of self-consistency equations. We present numerical solu-
tions for all temperatures including T = 0. The spin-static
T = 0 critical point well agrees with the results for an ear-
lier model version [3].

The main results follow in Section 4. We evaluate the
critical line in the T –t plane (t represents the hopping
strength) as a sequence of improved dynamical approxi-
mations, which helps to derive the decay of the critical
temperature towards the quantum critical point. This dy-
namical approximation scheme is not designed to capture
the zero-temperature limit. But, by increasing the number
of Fourier components of the effective random medium,
one finds the Tc-deviation from the spin-static approxi-
mation result almost accurately down to lower and lower

temperatures. It is seen that the higher-frequency correc-
tions to Tc are small; their infinite number accumulates
and leads to the non-analytical behavior of the Tc-curve
for Tc → 0. From the characteristic decay of these correc-
tions we deduce the location of the QCP. The numerical
results also fit with the quantum-dynamical shift expo-
nent of the Tc-curve and thus provide a reliable estimate
of the QCP’s position.

2 Effective action and construction
of the self-consistency method

2.1 Model and spin glass decoupling procedure

We consider the grand canonical Hamiltonian

K =
1
2

∑
i�=j

JijS
z
i Sz

j − µ
∑
iσ

a†
iσaiσ + t̃

∑
〈ij〉σ

a†
iσajσ (1)

with the fermionic Ising spin operators given by Sz
i =

a†
i↑ai↑ − a†

i↓ai↓. The sum index 〈ij〉 in the hopping term
denotes summation over nearest-neighbor lattice sites. We
assume quenched Gaussian disorder among the magnetic
coupling constants Jij according to the distribution

P (Jij) =
1√
2πJ̃

exp

(
− J2

ij

2J̃2

)
· (2)

In distinction to previous work [3,11,14] there is no dis-
order in the kinetic part of (1). In order to facilitate the
solution of this model we assume a fully connected mag-
netic interaction among the N lattice sites. The hopping
takes place on an underlying simple cubic lattice in the
limit of infinite spatial dimensions d. To obtain physically
meaningful results we apply the usual scaling of the model
parameters [15]

J̃ = J/
√

N and t̃ = t/
√

d. (3)

To some extent the derivation of the self-consistency
equations of the present model follows the detailed discus-
sion given in [11]. In the following we restrict ourselves to
a brief outline of the two-step decoupling procedure in the
replica formalism.

We start from the Grassmann field theoretic formula-
tion of the n-fold replicated partition function. The dis-
order average, i.e. integration over the magnetic coupling
constants with the Gaussian weight (2) generates four-
spin products in the effective action. Due to the assumed
complete connectivity of the magnetic interaction these
four-spin products can be reduced to quadratic terms by
means of site-global, replica and imaginary-time depen-
dent real decoupling fields Qττ ′

αβ . The disorder averaged
replicated partition function at this stage reads

[Zn]J = cn

∫
DQ

∫
D Ψ e−A0−At−AJ (4)
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with the action terms

A0 =
∑
iασ

∫
τ

Ψ̄ τ
iασ (∂τ − µ)Ψτ

iασ , (5)

At = t̃
∑
(ij)
ασ

∫
τ

Ψ̄ τ
iασΨ τ

jασ , (6)

AJ =
J2

4

∫
ττ ′

∑
α,β

i

((
Qττ ′

αβ

)2

− 2Qττ ′
αβ Sτ

iαSτ ′
iβ

)
. (7)

Here Sτ
iα =

∑
σ Ψ̄ τ

iασσΨ τ
iασ is the time dependent Grass-

mann representation of an Ising spin operator and the τ -
integrations extend from 0 to the inverse temperature 1/T .

The further evaluation of (4) relies on the elimination
of the fields Qττ ′

αβ by means of a saddle point integration.
The simplest but by no means trivial way to proceed would
be the assumption of a replica-symmetric and static (i.e.
ττ ′-independent) saddle point [3,11]. Since we want to
explore however the role played by the quantum dynamics,
we have to keep the time dependence.

Let us symbolize the quantum statistical average and
the disorder average by 〈 〉 and [ ]J , respectively. Then,
the saddle point matrix can be expressed in terms of the
corresponding averaged spin products:

Qττ ′
α�=β

∣∣∣
s.p.

=
[〈

Sτ
iαSτ ′

iβ

〉α�=β
]

J

=
[〈S0

iα

〉〈S0
iβ

〉]
J

(8)

Qττ ′
αα

∣∣∣
s.p.

=
[〈

Sτ
iαSτ ′

iα

〉]
J

=
[〈

Sτ−τ ′
iα S0

iα

〉]
J
. (9)

Clearly, the inter-replica spin correlations are indepen-
dent of time because the fermions can not propagate
between different replications of the system. All quantum-
dynamical behavior of the model originates from the di-
agonal elements of the saddle point matrix.

In this publication we choose a global replica-
symmetric saddle point (which is approximate only below
Tc, but does not affect the Tc-result of the second order
phase transition) with the appropriate time dependence
according to (8, 9),

Qττ ′
α�=β

∣∣∣
s.p.

= q and Qττ ′
αα

∣∣∣
s.p.

= q̃|τ−τ ′|. (10)

We prefer to work in frequency space and perform
Fourier transformations of the Grassmann variables as
well as of the diagonal part of the saddle point matrix
which take the form

Ψτ = T

∞∑
l=−∞

Ψ l e−izlτ , (11)

q̃|τ−τ ′| =
∞∑

m=−∞
q̃m e−iωm(τ−τ ′), (12)

where zl and ωm denote fermionic and bosonic Mat-
subara frequencies, respectively. The Fourier coefficients
q̃m are real quantities and obey the symmetry relation
q̃m = q̃−m = q̃∗m.

In order to facilitate the Grassmann integration the
effective action must be further reduced to a quadratic
form of the Grassmann variables which requires another
decoupling step. Without going into detail we hence in-
troduce Gaussian integrations over site-local and replica-
global fields zi and site-local and replica-global fields yiα.
The latter again split into yiα0, which are also present
in the spin-static theory, and dynamical decoupling fields
y±

iαm≥1, which comprise the quantum dynamical character
of the model.

Introduction of a space saving definition. Throughout
this article we will use the shorthand notation of the
Gaussian integral operator

∫ G

x

f(x) =
1√
2π

∫ ∞

−∞
dx exp

(
−x2

2

)
f(x) (13)

which renders many of the equations more compact.

Employing this abbreviation we arrive at the com-
pletely decoupled partition function

[Zn]J = cn
∏

i

∫ G

zi

∏
iα

∫ G

yiα0

∏
iα

m≥1

∫ G

y+
iαm

∫ G

y−
iαm

∫
D Ψ e−Aeff

(14)
with the effective action

Aeff =
nNJ2

4T 2

(∑
m

q̃2
m − q2

)
+ At

− T
∑
iασl

(
izl + µ + σH0

iα

)
Ψ̄ l

iασΨ l
iασ

− T
∑
iασl
m≥1

σ
(
Hm

iαΨ̄ l+m
iασ Ψ l

iασ + Hm
iα

∗Ψ̄ l−m
iασ Ψ l

iασ

)
.

(15)

In equation (15) we discarded irrelevant terms ∼ n2. The
occurring effective magnetic fields, which are complex, dy-
namical, and local in site- and replica-indices, are given by

H0
iα = J

(√
q zi +

√
q̃0 − q yiα0

)
, (16)

Hm≥1
iα = J

√
q̃m

2
(
y+

iαm + iy−
iαm

)
. (17)

2.2 The dynamical CPA approach

According to equations (14, 15) the problem has been re-
duced to an ensemble of non-interacting fermions moving
in a complex replica- and spin-dependent effective random
medium. This situation immediately calls for a dynamical
version of the CPA [9]. Following the prescription of this
method we replace the complex random medium Hm

iα by
a yet unknown self energy Σl. The chosen limit of infinite
spatial dimensions simplifies the problem to a single site
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problem and justifies the assumption of a site-diagonal (or
k-independent) self-energy [1,6].

The effective action (15) is not diagonal in the en-
ergy indices thus allowing for virtual absorption and emis-
sion of dynamical field quanta Hm≥1

iα . However, the full
fermion Green’s function of the original interacting prob-
lem with any realization of the quenched disorder is cer-
tainly energy conserving and so is the full disorder av-
eraged Green’s function. Hence its off-diagonal elements
in frequency space must vanish due to the average over
the effective random medium. There is also no ferromag-
netic tendency in the system which altogether justifies our
ansatz of a spin-independent and frequency-diagonal self-
energy.

In order to determine Σl self-consistently we keep the
random medium at one single site, say i = 0. The effective
action then reads

ACPA
eff =

nNJ2

T 2

∑
m

(
q̃2
m − q2

)
− T

∑
ij

ασl′l

Ψ̄ l
iασ

((
G−1

)l′l
ij

− V l′l
ασδi0δj0

)
Ψ l

jασ (18)

with the inverse of the full disorder averaged Green’s func-
tion (

G−1
)l′l
ij

=
(
(izl + µ − Σl) δij + t̃ δ〈ij〉

)
δl′l (19)

and the effective dynamical potential at the special lattice
site i = 0

V l′l
ασ =




σHm
0α, l′ = l + m, m > 0

σH0
0α + Σl, l′ = l

σHm
0α

∗, l′ = l − m, m > 0.

(20)

In the assumed case of infinite spatial dimensions near-
est-neighbor hopping of non-interacting particles is de-
scribed by the function (recall the scaling (3))

T0(x, t) = −sign(Imx)
√

π

2t
exp

(
− x2

4t2

)(
i + erfi

x

2t

)
(21)

which reveals for x = ε + i0+ the well-known Gaussian
density of states [15,16]. Hence the full Green’s function G
defined in (19) is readily expressed by

(G)ij = Tδij + O
(

1√
d

)
(22)

where T is site independent and diagonal in the Matsubara
indices:

(T)l′l = T0 (izl + µ − Σl, t) δl′l. (23)

For the formulation of the self-consistency equations it
is useful to define as an auxiliary quantity the site-local
propagator at site i = 0 in the presence of the effective
potential,

(Γασ)l′l = T
〈
Ψ̄ l

0ασΨ l′
0ασ

〉
ACPA

eff

=
([

T−1 + Vασ

]−1
)

l′l
.

(24)
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Fig. 1. Structure of the self-consistency problem of the itin-
erant spin glass model (inspired by [8]). (a) indicates the
effective dynamical random medium Hm

i , which depends on
the spin glass order parameter q and the replica-diagonal
saddle point q̃m (Eqs. (16, 17)). (b) and (c) illustrate the de-
termination of the homogeneous self-energy Σl by the CPA-
equation (25). From the local propagator Γσ at the special lat-
tice site i = 0 the physical quantities q and q̃m are constructed,
which in turn generate the original random medium in (a).

In essence, within the CPA method the frequency-depend-
ent self-energy Σl is determined by the demand that the
average of the local propagator matrix Γασ at the special
site i = 0 with respect to the dynamical potential (20)
coincides with the local part of the full disorder averaged
homogeneous Green’s function, T (see Fig. 1). Note that
equating both quantities requires the replica limit limn→0

to be taken.
Omitting the algebraic details we obtain the condi-

tional matrix equation (to condense the notation all su-
perfluous site-, replica-, or spin-indices are dropped from
now on)

T =
∫ G

z

[Γσ](z)
y (25)

where the symbol [ ](z)
y is a shorthand notation for the

average with respect to all replica-local decoupling fields
y = {y0, y

+
m, y−

m},

[f(z,y)](z)
y =

∫ G

y0

∏
m≥1

∫ G

y+
m

∫ G

y−
m

W (z,y)f(z,y)∫ G

y0

∏
m≥1

∫ G

y+
m

∫ G

y−
m

W (z,y)
· (26)

The weight function W (z,y) that appears in (26) results
from the integration of the Grassmann fields and is given
by (Trlσ comprises spin and frequency summation)

W (z,y) = exp (Trlσ ln [1 + VσT]) . (27)

Note that, as discussed above, the off-diagonal elements
of Γσ as well as its spin dependence vanish exactly by
integration.

Expressions for the saddle point values (10) can be
obtained by construction of the spin products given by
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equations (8, 9) in terms of the Grassmann fields at the
special lattice site i = 0 and application of Wick’s theo-
rem. After performing the Fourier transformation (11) and
taking the replica limit limn→0 the set of self-consistency
equations is thus completed by

q =T 2

∫ G

z

(
[TrlσσΓσ](z)

y

)2

(28)

q̃m =T 2

∫ G

z

∑
ll′

σσ′

σσ′

×
[
Γ l+m,l

σ Γ l′−m,l′
σ′ − Γ l+m,l′+m

σ Γ l′,l
σ′ δσσ′

](z)

y
. (29)

In (29) the first term involves the product of sums over the
mth super- and sub-diagonals and the second the trace of
the matrix product of two factors Γσ shifted against each
other about m elements along the diagonal.

Note that in the limiting case of a vanishing hopping
strength (t → 0) equations (28, 29) correctly recover the
results of the non-itinerant model [11] and with the ad-
ditional choice of µ = −iπT/2 [17] the equations further
reduce to the SK-solution of the classical model [18].

2.3 General solution strategies

Any attempt to solve the set of self-consistency equa-
tions (25, 28, 29) faces the fundamental problem of the in-
finitely many quantities q̃m each of which effectuates corre-
sponding Gaussian integrations via equations (16, 17, 27).
In order to render the problem feasible we propose to keep
only a few Fourier components q̃m with m = {0, . . . , M}
and take the higher-frequency components to be zero, i.e.
q̃m>M ≡ 0. In turn this means that the Gaussian inte-
grations associated with the components q̃m>M become
trivial. Below we will refer to this approximation scheme
as the “dynamical approximation of order M”.

Within this approximation scheme the quantum dy-
namics is treated on energy scales ranging from ω0 = 0
to ωM = 2πTM . To estimate the quality of this approx-
imation one has to compare the energy scales that are
neglected to the hopping strength t as the model param-
eter that generates the quantum dynamics. Thus we are
led to

t � ωM+1 ≡ 2πT (M + 1) (30)

as a simple criterion of validity of the Mth order dynam-
ical approximation. Hence, although it is neither a high
temperature expansion nor an expansion in small t, the
method works well especially for small t/T . In those re-
gions in parameter space the approximation already at
manageable low orders M excellently captures the effects
of the quantum dynamics

Another difficulty arises from the infinite extension of
the matrices T, V(which becomes a band matrix with M
sub- and super-diagonals (20) in the dynamical approxi-
mation of order M) and Γ in frequency space. Naturally,

a numerical analysis requires the restriction to finite ma-
trices of size 2(lc +1)×2(lc +1), i.e. the matrices are con-
structed in the limited frequency range z−lc−1 to zlc . How-
ever, there are also important contributions from higher
frequencies that can not be neglected for accurate solu-
tions.

We overcome this problem by systematic asymptotic
expansions of the self-consistency equations in terms of
1/zl up to some feasible order O ((1/zl)K

)
. Here we ex-

ploit the high-frequency asymptotics of the self-energy

Σl
−→

|l|→∞

K∑
k=1

ak (izl)
−(2k−1) + O

(
z
−(2K+1)
l

)
(31)

where the expansion coefficients ak are easy to calculate
averages of polynomials of the effective fields (16, 17).
The sums over the Matsubara frequencies which occur
in equations (27, 28, 29) can always be split up into a
low-frequency main part and a high-frequency part which
are separated by the cut-off index lc. While the matrix-
structured main part has to be treated numerically the
high-frequency contributions can be formulated in terms
of asymptotic series expansions of docile structure that
permits analytical summation.

The approximation of the high-frequency contribu-
tions by asymptotic series expansions introduces some er-
ror. The cut-off index lc has to be chosen such that this
error undershoots some given threshold of insignificance.
In practical calculations we used different methods to de-
termine lc. A simple way is to make trial variations of
the matrix size at each iteration cycle and to adjust (in-
crease or decrease) lc according to the corresponding vari-
ations of all relevant intermediate quantities. A more di-
rect method is to evaluate the contributions of the first
neglected asymptotic order, i.e. O ((1/zl)K+1

)
, as a func-

tion of lc and to apply some suitable smallness criterion.
The latter method turned out to be un-practical for M > 0
because of the complexity of the occurring analytical ex-
pressions for the asymptotic Matsubara sums.

The final criterion for lc is always that the physical
quantities are independent of this auxiliary parameter at
some desired level of precision. The proper choice of lc and
thereupon the computational expenses for solving the self-
consistency equations strongly depend on the temperature
as well as on the order K up to which the asymptotic series
expansions of the equations can be driven.

All solutions of the self-consistency equations that are
presented in this article have been obtained by means of
the principal iterative algorithm sketched in Figure 2. This
procedure proved to be insensitive to the initial values
and showed quite satisfying convergence properties in all
regions of the parameter space explored so far.

For the sake of simplicity from now on we restrict our-
selves to the case of a vanishing chemical potential, µ = 0,
which corresponds to half fermion filling due to particle-
hole-symmetry of the Hamiltonian (1). Without loss of
generality we always set J ≡ 1.
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Fig. 2. Basic iterative scheme [19] for the solution of the cou-
pled self-consistency equations (explanation in the text).

3 Spin-static approximation

This section is devoted to a discussion of the dynamical
self-consistency equations in the static approximation as
the first and simplest of a sequence of the dynamical ap-
proximations proposed in the last section. This static ap-
proximation consists in neglecting the time dependence of
the saddle point (10) or equivalently in taking all Fourier
components q̃m with m > 0 to be zero, i.e. M = 0. This
restriction to the static component q̃0 implicates tremen-
dous simplifications of the self-consistency equations.

Because the dynamical effective fields (17) vanish the
decoupling fields y±

m can be integrated out trivially. One
is left with only two Gaussian integrations over the static
fields y0 and z. Also, within this approximation the occur-
ring matrices become diagonal and thus the matrix struc-
ture of the self-consistency equations disappears. Thus,
the dynamical CPA-equation (25) decouples into a set of
scalar equations for each Matsubara frequency that can
be solved one at a time. Furthermore, the matrix inver-
sion (19) turns into simple scalar inversion and the eval-
uation of the weight function (27) reduces to an easily
manageable numerical Matsubara product,

Wstatic(z, y0) =
1
2

(cosh (H0/T ) + 1)

×
∞∏

l=0

(
|ul|2 + H0

2

z2
l + H0

2

)2

, (32)

where H0 =
√

q z +
√

q̃0 − q y0. The first term in (32)
is the suitable regularized frequency and spin product of
izl + σH0 and constitutes the weight function of the non-
itinerant model [11]. In the present itinerant model the
effect of the hopping becomes noticeable in the deviation
of ul from izl, where the first is defined by

ul =
1

T0(izl − Σl, t)
+ Σl. (33)

Fig. 3. Finite temperature results in the spin-static approxi-
mation for hopping strengths t = 0 . . . 1.1 in steps of 0.1. The
upper plot shows the spin glass order parameter q (full lines)
and the zero frequency component of the replica diagonal sad-
dle point value q̃0 (dashed lines). The q̃0-curves approach 1/2
as T → ∞. Below is plotted the corresponding local static sus-
ceptibility χ0 = (q̃0 − q)/T which remains finite as T → 0. At
the spin glass-paramagnet transition χ0 always reaches unity.

In terms of the functional

A(x) = 4x

∞∑
l=0

1
|ul|2 + x2

(34)

the expressions for the saddle point values q and q̃0 given
in equations (28, 29) simplify to

q = T 2

∫ G

z

(
[A(H0)]

(z)
y0

)2

, (35)

q̃0 = T 2

∫ G

z

[
A(H0)2 + A′(H0)

](z)

y0
. (36)

The numerical solutions of the static set of self-consist-
ency equations are presented in Figure 3. As T → ∞
all available many particle states become equally popu-
lated and q̃0 → 1/2 since two of the four local states
are magnetic. In the non-itinerant limit t = 0 the
paramagnet to spin glass transition occurs at Tc =
1/ (1 + exp (−1/(2Tc))) 	 0.6767. The hopping hampers
the local freezing of the spins and lowers the critical tem-
perature.
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3.1 The limit of zero temperature

The numerical solutions of the static equations feature the
low temperature behavior (q̃0−q) ∼ T . In order to perform
the zero-temperature limit it is advisable to eliminate q̃0

and to formulate the equations in terms of q and the static
part of the local susceptibility χ0 = (q̃0 − q)/T which
remains finite as T → 0 (Fig. 4). We replace the discrete
frequencies zl by the continuous variable ζ and recall the
zero-temperature limit of the Matsubara summations,

T
∞∑

l=0

f(zl)
−→
T→0

1
2π

∫ ∞

0

dζ f(ζ). (37)

By means of the rescaling of the integration variable√
T y0 → y0 the weight function (32) together with the

Gaussian factor assume the form exp (−g(z, y0)/T ). The
exponent function g(z, y0) can be shown to remain finite as
T → 0. Thus, the y0-integration reduces to a simple sad-
dle point integration where the z-dependent saddle point
has to be determined numerically. Finally, we derive the
following set of self-consistency equations at zero temper-
ature:

T0 (iζ − Σ(ζ), t) =
1
2

∫ G

z

∑
σ=±1

1
u(ζ) + ση(z)

, (38)

q = q̃0 =
∫ G

z

Ā2(η(z)) (39)

χ0 =
√

2
πq

+
∫ G

z

Ā′(η(z))
1 − χĀ′(η(z))

(40)

η(z) = χĀ(η(z)) +
√

q|z|, (41)

with the functional

Ā(x) =
2x

π

∫ ∞

0

dζ
1

|u(ζ)|2 + x2
· (42)

In equations (38–42), u(ζ) and Σ(ζ) are continuous ver-
sions of the quantities Σl and ul defined in Section 2.2 and
equation (33). In terms of the constant

γ =
∫ ∞

0

dζ exp
(
2ζ2
)
Γ

(
1
2
, ζ2

)2

(43)

the static quantum critical point is located at tcs =
2γ/π � 1.406. Up to a slight deviation due to different
model definitions this critical value quantitatively agrees
with the results obtained in [3] for the case of a semi-
elliptic free energy band.

In the zero-temperature disordered phase, i.e. for t >
tcs, the static part of the local susceptibility is given by
χ0(t)|T=0 = (πt −

√
π2t2 − 4γ2)/(2γ). Its deviation from

the corresponding quantity in the non-interacting limit,
χ0(t)|T=0,J=0 = γ/(πt), signalizes the vicinity of the spin
glass phase.

Fig. 4. Zero-temperature results for the spin glass order pa-
rameter q = q̃0 and the local static susceptibility χ0. Increasing
hopping strength depresses the spin glass order and drives a
zero-temperature phase transition at tcs � 1.406.

4 Quantum dynamical solutions

While exact in the non-itinerant limit, the spin-static ap-
proximation discussed in Section 3 turns out to yield a
very good description of our model for weak and mod-
erate hopping. For stronger hopping, however, this static
approximation becomes increasingly inaccurate and par-
ticularly fails close to the T = 0 quantum phase transi-
tion. In this section we present improved solutions of the
self-consistency equations within the dynamical approxi-
mation of up to third order as introduced in Section 2.3.

For the time being we restrict ourselves to the deter-
mination of the phase diagram of the model. Since at crit-
icality there is no issue of replica symmetry breaking the
choice of the replica-symmetric saddle point (10) is justi-
fied in these calculations. We determine the critical curve
by virtue of the exact relation

Tc = q̃0 (Tc) (44)

which was first derived in [11] in the static approxima-
tion and can be shown to hold within the present dy-
namical treatment, too (see A.1). Equation (44) implies
that the static part of the local susceptibility, χ0, reaches
unity at the phase transition. In solving the conditional
equation (44) it is sufficient to fix the spin glass order
parameter to q = 0 thus rendering the z-integrations in
equations (25, 29) trivial.

Our solutions for the critical line Tc(t) as a sequence
of the first three orders of the dynamical approximation
(M = {1, 2, 3}) are shown in Figure 5. With increasing
hopping strength and decreasing temperature the growing
influence of the discrete dynamic saddle point components
q̃m>0 is getting more and more apparent. It can be seen
clearly from Figure 6 that with increasing order of the
dynamical approximation two successive solutions start
to separate at larger t. We observe a rapid convergence
of this sequence of solutions except for the region where
the quantum phase transition is expected. As Tc → 0 all
curves collapse into the static critical point at tcs.
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Fig. 5. The critical line of the spin glass (SG) to paramag-
net (PM) phase transition in the static approximation (dashed
line) and in the dynamical approximations (full lines) of first
(Tc,1, uppermost) to third order as discussed in Section 2.3.
The dotted line indicates the expected fully dynamical phase
boundary; the light-dotted part shows the pure critical behav-
ior (45).

Fig. 6. Differences of the critical lines in two successive orders
of the dynamical approximation, ∆M = Tc,M−1 − Tc,M .

In the disordered phase the q̃m and consequently the
effective potential matrix (20) vanish linearly with tem-
perature, i.e. the dynamical susceptibility χm = q̃m/T has
a finite zero-temperature limit. Hence the self-consistent
inclusion of any finite number of the q̃m can affect neither
the position of the QCP nor the critical exponents. In or-
der to capture the quantum dynamical character of the
problem it is necessary to take into account the q̃m over a
finite range of Matsubara frequencies ωm around ω0 = 0.
Thus, the linear temperature decrease of the q̃m is com-
pensated by the increasing number of Fourier components
within a fixed frequency range and the location of the
critical point is shifted towards smaller hopping strength
compared to the static approximation (Sect. A.2).

Close to zero temperature the critical line behaves like

Tc ∼ (tc − t)φ, t < tc (45)

with the shift exponent changing from φ = 1 in the static
approximation to φ = 2/3 [4] due to the quantum dy-
namics (Sect. A.2). Figure 5 gives an impression of how
this non-analytical behavior emerges from the sequence
of the (analytical) approximate solutions. The differences
between two successive approximations,

∆M = Tc,M−1 − Tc,M , (46)

exhibit pronounced maxima (Fig. 6). While the positions
of these maxima vary only very little they become lower
in height but sharper with increasing M .

The critical lines Tc,M are monotonically decreasing
functions of t. Hence the distance between Tc,M and the
fully dynamical true critical line, ∆∞

M = Tc,M −Tc,∞, pos-
sesses a non-analytical maximum exactly at tc for any M .
Since

∆∞
M =

∞∑
M ′=M+1

∆M ′ , (47)

this non-analyticity must coincide with the position of the
maxima of the ∆M as M → ∞. This simply means that
the sequence of the critical lines Tc,M converges slowest
in the very proximity of the QCP. Based on this scenario
we estimate the location of the QCP: we plot the maxima
positions vs. their heights and extrapolate to zero height.
This simple procedure yields the final result

tc 	 1.30. (48)

5 Summary and outlook

We considered a fermionic spin glass model including a
nearest-neighbor hopping term. By means of standard
decoupling techniques the problem has been reduced to
that of a dynamical random field system. A set of self-
consistency equations for the spin glass order parameter q
and the Fourier components of the replica-diagonal sad-
dle point q̃m has been derived by virtue of a dynamical
CPA method. In order to facilitate numerical solutions we
kept only a manageable number of low frequency com-
ponents q̃m≤M in the equations and abstained from the
self-consistent evaluation of the q̃m>M . We referred to this
scheme as the dynamical approximation of order M .

Within the static approximation (q̃m>0 = 0) we pre-
sented solutions both at finite and zero temperature.
The second order T = 0 phase transition was found at
tcs = 2γ/π 	 1.406, equation (43). In order to determine
the phase diagram of the model we calculated the SG-PM
phase boundary in the dynamical approximation in up to
third order (Fig. 5). These data allowed to estimate the
location of the fully dynamical critical point at tc 	 1.30.
In order to confirm this result it would be desirable to find
solutions in higher orders of the dynamical approximation,
i.e. M > 3.
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In this article we concentrated on the spin sector of our
model and left out the properties in the charge sector such
as the fermionic density of states. In the future it will be of
high interest to investigate the effect of the hopping on the
band structure of the system, particularly on the spin glass
gap at zero temperature [20]. In this context an extension
of the solutions to non-zero chemical potential µ [21] is
desirable, too.

There are also important questions concerning the in-
terplay between quantum dynamics and replica symmetry
breaking [22], both issues being most significant at T = 0.

This work was supported by the Deutsche Forschungs-
gemeinschaft under research project Op28/5–2 and by the
SFB410. One of us (M.B.) also wishes to acknowledge the schol-
arship granted by the University of Würzburg.

Appendix A

A.1 Derivation of equation (44)

In order to locate the spin glass phase transition we ex-
pand equation (28) in terms of q (note that q enters the
equations only in the combination

√
qz by equation (16)).

With the abbreviation A(z,y) = TrlσσΓσ(z,y) we have

q = T 2

∫ G

z

(
[A](0)y + ∂√

qz [A](z)
y

∣∣∣
q=0

√
qz

)2

+ O (q2
)
.

(49)
Recall the definition of the average [ ](z)

y , equa-
tion (26). The symmetry relations A(0,y) = −A(0,−y)
and W (0,y) = W (0,−y) readily follow from equa-
tions (16, 17, 20, 24). Hence, the first term in equation (49)
vanishes by the y-integration.

For the second term in equation (49) we need to eval-
uate

∂√
qzWA =

(
∂√

qzW
)
A + W∂√

qzA. (50)

We expand the terms ln [1 + VσT] and
[
T−1 + Vσ

]−1

that occur in the expressions for W and A, respectively
(Eqs. (27, 24)), in powers of the matrix Vσ (20). After tak-
ing the derivative these series can be re-summed easily
yielding

∂√
qzW = WA, (51)

∂√
qzA = −TrlσΓ2

σ. (52)

Altogether, very close to the phase transition where, q 	 0,
equation (49) reads

1 = T 2

∫ G

z

z2

([
(TrlσσΓσ)2 − TrlσΓ2

σ

](0)
y

)2

. (53)

The remaining Gaussian z-integration evaluates to 1. By
comparing to equation (29) at T = Tc, the right hand side
of equation (53) can be identified with q̃2

0/T 2
c which finally

proves relation (44).

A.2 Expansion in small q̃m

In order to extract the behavior of the critical line Tc(t)
at the quantum phase transition we expand the self-
consistency equations in powers of the effective potential
matrix Vσ (20) in the disordered phase, i.e. for q = 0. The
internal summations due to the occurring matrix multi-
plications compensate the linear temperature decrease of
the Fourier components of the dynamic saddle point, q̃m.
An expansion up to second order yields the following self-
consistency equation for the local dynamical susceptibility
χm = q̃|m|/T :

χm = Cm

(
1 + χ2

m

) − (1 − Cmχm)T

∞∑
n=−∞

Fm,nχn

1 − Cnχn
·

(54)
Using the abbreviation Xl = 1/ (1/T0(izl − Σl, t) + Σl)
(see (21)) the coefficients that occur in equation (54) are
defined by

Cm = −2T

∞∑
l=−∞

XlXl+m, (55)

Fm,n = T
∞∑

l=−∞
XlXl+mXl+n (2Xl + Xl+m+n) , (56)

and the self-energy is given explicitly by

Σl =
1
2
X2

l T
∞∑

m=−∞

χmXl+m

1 − Cmχm
· (57)

By numerical evaluation of equation (54) in the
zero-temperature limit we determine a critical hopping
strength tc 	 1.372 well between the static result and
the expected fully dynamical value given in Section 4.

Expansion of equations (54–56) in the hopping
strength around tc ≡ tc(T = 0) and in small frequen-
cies ωm finally yields the condition for the critical line at
small temperatures

tc − tc(T ) ∼ T

ωΛ∑
ωm=0

√
ωm − T

ωΛ∑
ωm=0

√
ωm

∣∣∣∣∣
T→0

∼ T 3/2. (58)
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